Mutational analysis of BTAF1–TBP interaction: BTAF1 can rescue DNA-binding defective TBP mutants

نویسندگان

  • Marcin P. Klejman
  • Xuemei Zhao
  • Frederik M. A. van Schaik
  • Winship Herr
  • H. Th. Marc Timmers
چکیده

The BTAF1 transcription factor interacts with TATA-binding protein (TBP) to form the B-TFIID complex, which is involved in RNA polymerase II transcription. Here, we present an extensive mapping study of TBP residues involved in BTAF1 interaction. This shows that residues in the concave, DNA-binding surface of TBP are important for BTAF1 binding. In addition, BTAF1 interacts with residues in helix 2 on the convex side of TBP as assayed in protein-protein and in DNA-binding assays. BTAF1 drastically changes the TATA-box binding specificity of TBP, as it is able to recruit DNA-binding defective TBP mutants to both TATA-containing and TATA-less DNA. Interestingly, other helix 2 interacting factors, such as TFIIA and NC2, can also stabilize mutant TBP binding to DNA. In contrast, TFIIB which interacts with a distinct surface of TBP does not display this activity. Since many proteins contact helix 2 of TBP, this provides a molecular basis for mutually exclusive TBP interactions and stresses the importance of this structural element for eukaryotic transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NC2alpha interacts with BTAF1 and stimulates its ATP-dependent association with TATA-binding protein.

Transcriptional activity of the TATA-binding protein (TBP) is controlled by a variety of proteins. The BTAF1 protein (formerly known as TAF(II)170/TAF-172 and the human ortholog of Saccharomyces cerevisiae Mot1p) and the NC2 complex composed of NC2alpha (DRAP1) and NC2beta (Dr1) are able to bind to TBP directly and regulate RNA polymerase II transcription both positively and negatively. Here, w...

متن کامل

Chromatin interaction of TATA-binding protein is dynamically regulated in human cells.

Gene transcription in mammalian cells is a dynamic process involving regulated assembly of transcription complexes on chromatin in which the TATA-binding protein (TBP) plays a central role. Here, we investigate the dynamic behaviour of TBP by a combination of fluorescence recovery after photobleaching (FRAP) and biochemical assays using human cell lines of different origin. The majority of nucl...

متن کامل

An ENU-induced point mutation in the mouse Btaf1 gene causes post-gastrulation embryonic lethality and protein instability

The mouse Btaf1 gene, an ortholog of yeast MOT1, encodes a highly conserved general transcription factor. The function of this SNF2-like ATPase has been studied mainly in yeast and human cells, which has revealed that it binds directly to TBP, forming the B-TFIID complex. This complex binds to core promoters of RNA polymerase II-transcribed genes and, of crucial importance, BTAF1-TBP interactio...

متن کامل

TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity.

The human RNA polymerase II transcription factor B-TFIID consists of TATA-binding protein (TBP) and the TBP-associated factor (TAF) TAF(II)170 and can rapidly redistribute over promoter DNA. Here we report the identification of human TBP-binding regions in human TAF(II)170. We have defined the TBP interaction domain of TAF(II)170 within three amino-terminal regions: residues 2 to 137, 290 to 38...

متن کامل

Molecular architecture of the basal transcription factor B-TFIID.

BTAF1 (formerly named TAF(II)170/TAF-172) is an essential, evolutionarily conserved member of the SNF2-like family of ATPase proteins and together with TATA-binding protein (TBP) forms the B-TFIID complex. BTAF1 has been proposed to play a key role in the dynamic regulation of TBP function in RNA polymerase II transcription. We have determined the structure of native B-TFIID purified from human...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005